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1. Introduction

Since the introduction of symbolic software the whole approach to important engineering fields
has changed, and Mathematica [1] is universally acknowledged as one the most powerful
programming languages, due both to its flexibility and to its integrated environment. For
example, the solutions of various dynamic and stability problems have been offered [2,3]. In this
paper Mathematica is employed in order to find the free frequencies and the vibration mode of an
Euler–Bernoulli beam carrying a concentrated mass at an arbitrary position. The beam is
supposed to be constrained at both the ends with elastically flexible constraints, and finally a
concentrated dashpot is supposed to be placed at an arbitrary position along the span.

The free vibration frequencies of slender beams carrying a concentrated mass at an arbitrary
position have already been found [4,5], whereas the presence of flexible ends has been introduced
in Refs. [6,7]. All the classical cases can be regarded as particular or limiting cases which can be
deduced from this general approach. Finally, quite recently a cantilever beam with a concentrated
mass at its free end has been examined [8], in the presence of a concentrated dashpot at an
arbitrary position, and the complex free vibration frequencies have been deduced. The aim of the
paper is to give the frequency equation for the above-mentioned structural system, in a manner
which fully exploits the symbolic properties of Mathematica. Various numerical examples end the
paper, in which the role of the control parameters is enlightened.

2. Theory

Consider the slender Euler–Bernoulli beam in Fig. 1, with span L; uniform cross-section,
Young’s modulus E; cross-sectional area A and second moment of area I ; constrained at the end
by means of elastically flexible constraints defined by the axial stiffnesses kTL and kTR and by the
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rotational stiffnesses kRL and kRR: Finally, let zc ¼ xcL and zM ¼ xML be the arbitrary abscissae
where the concentrated dashpot and the concentrated mass are located, respectively.

In order to deduce the equation of motion, it is convenient to define the following system of
three partial differential equations:

EIvIV
1 ðz; tÞ þ rA.v1ðz; tÞ ¼ 0; 0ozozc; ð1Þ

EIvIV
2 ðz; tÞ þ rA.v2ðz; tÞ ¼ 0; zcozozM ; ð2Þ

EIvIV
3 ðz; tÞ þ rA.v3ðz; tÞ ¼ 0; zMozoL; ð3Þ

where r is the mass density, z the generic cross-section abscissa, vi the transverse displacement, t
the time, IV denotes the spatial derivative with respect to the z variable, and ’v is the temporal
derivative with respect to time t:

The solution can be put in the following form:

vhðz; tÞ ¼ VhðzÞelt; ð4Þ

where l is the (unknown) complex frequency of the system. This solution can be used in the partial
differential equations, leading to a system of three ordinary differential equations in VhðzÞ:

EIVIV
h ðzÞ þ l2rAVhðzÞ ¼ 0; h ¼ 1; 2; 3: ð5Þ

Now introduce the non-dimensional abscissa x ¼ z=L and the parameter:

b4 ¼ �
l2rAL4

EI
; ð6Þ

so that Eq. (5) becomes

VIV
h ðxÞ � b4VhðxÞ ¼ 0: ð7Þ

The general solutions of these differential equations can be written as

VhðxÞ ¼ C1he
bx þ C2he

�bx þ C3he
ibx þ C4he

�ibx; ð8Þ

where i is the imaginary unit ði ¼
ffiffiffiffiffiffiffi
�1

p
Þ; and Cjh with j ¼ 1;y; 4 and h ¼ 1; 2; 3 are 12 integration

constants, which must be calculated by imposing the boundary and the continuity conditions.
More particularly, two boundary conditions will be written at the non-dimensional abscissa x ¼ 0;
four continuity conditions must be imposed at the dashpot abscissa xc ¼ zc=L; and at the mass
abscissa xM ¼ zM=L; and finally two other boundary conditions will define the right constraint, at
the non-dimensional abscissa x ¼ 1:
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Fig. 1. Structural system.
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The stiffnesses of the elastic constraints can be conveniently defined by means of the following
non-dimensional parameters:

RL ¼
kRLL

EI
; TL ¼

kTLL3

EI
; ð9Þ

RR ¼
kRRL

EI
; TR ¼

kTRL3

EI
ð10Þ

at the left end and at the right end, respectively.
The 12 boundary and continuity conditions can be written in Mathematica as given in Fig. 2,

where l has been deduced from Eq. (6):

l ¼ i
b2

L2

ffiffiffiffiffiffiffi
EI

rA

s
: ð11Þ

All the equations must be equated to zero, and the resulting homogeneous system will have non-
trivial solutions only if its determinant is equal to zero. By imposing the nullity of the determinant
the frequency equation can be written without any inconvenience, but its complete expression, in
terms of the control parameters ðRL;TL;RR;TR; c;M; xc; xMÞ is too long to be given here.
However, a lot of particular cases can be recovered by limiting processes, as for example the
frequency equations deduced by Gurgoze et al. [8]. In order to obtain their result, it is necessary to
impose the following particular values of the control parameters: RL-N; TL-N; RR ¼ 0;

Fig. 2. The boundary conditions as written by the use of Mathematica.
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TR ¼ 0; and x ¼ 1; or, in Mathematica:

Limit½Limit½equation;RL-N�;TL-N=:fRR-0;TR-0g�: ð12Þ

In this way, the frequency equation of a cantilever beam with concentrated mass at the free end is
obtained, in the presence of a concentrated dashpot at the variable abscissa xc: (see the appendix)

3. Numerical examples

As a first example (Table 1), some numerical comparisons with known results will be
performed. Consider a simply supported beam with a concentrated mass at the abscissa xM ¼
0:25; and two rotationally flexible constraints defined by the non-dimensional flexibilities RL ¼
RR ¼ 0:02: The non-dimensional frequency b is given as a function of the non-dimensional mass
ratio m ¼ M=rAL; and, obviously, the results coincide with the results given in Refs. [6,7], where
the same exact approach has been used.

In the following two numerical comparisons and in the following numerical examples the
following data will be always assumed: Young’s modulus E ¼ 7
 1010 N=m2; second moment of
area I ¼ 5:20833
 10�10 m4; mass per unit length rA ¼ 0:657 kg=m and concentrated mass M ¼
2:025 kg: The frequencies are given in terms of li; as given in Eq. (11).

A numerical comparison with the results given in Ref. [8] is given in Table 2. The cantilever
beam carries a concentrated mass at its right free end, and a concentrated dashpot is placed at the
non-dimensional abscissa xc ¼ 0:2: The constraints and the frequency equation have already been
given in Eq. (12) and in the appendix, and the discrepancies between the results seems to be due to
numerical errors.

In Table 3 the exact frequencies are compared with the approximate values given by Wu and
Chen [9, Table 1]. The beam is clamped at the left end and free at the right, with a concentrated
dashpot at the non-dimensional abscissa xc ¼ 0:2: The first five non-dimensional frequencies are
reported as functions of the damping coefficient c; as obtained by three different approaches. The
agreement between the calculated frequencies is quite good, the FEM gives approximate real and
imaginary parts which are always greater than the exact ones, whereas the Analytical and
Numerical Method (ANCM) and the other approach give lower values.

The aim of the numerical examples in Tables 4 and 5 is to examine the influence of the right
axial stiffness and of the right rotational stiffness for a beam with a clamped end on the left, a

Table 1

Simply supported beam with elastically rotationally flexible ends: first free natural frequency as a function of the non-

dimensional mass ratio

m xM ¼ 0:25

0 0.8314

0.2 0.8072

0.4 0.7919

0.6 0.7813

0.8 0.7736

1 0.7676

M.A. De Rosa et al. / Journal of Sound and Vibration 263 (2003) 219–226222



Table 2

Numerical comparisons with Ref. [8]

l This note Ref. [8]

l1 �0:0036604397i7:076016 �0:0036604397i7:076019
l2 �0:7857807i115:536553 �0:7857807i115:536606
l3 �4:2973687i369:632627 �4:2973687i369:632796
l4 �8:0571467i768:481177 �8:0571467i768:481528
l5 �7:3858127i1312:397325 �7:3858137i1312:397925

Table 3

Numerical comparisons with Ref. [9]

c Methods l1 l2 l3 l4 l5

5.0 FEM �0:060437 �1:34301 �5:42172 �8:45298 �6:51107
7i25:8405 7i161:956 7i453:570 7i889:27 7i1472:36

ANCM �0:060437 �1:34284 �5:41613 �8:41973 �6:44152
7i25:8405 7i161:951 7i453:447 7i888:41 7i1468:63

[10] �0:060437 �1:34284 �5:41614 �8:41976 �6:44152
7i25:8405 7i161:951 7i453:448 7i888:41 7i1468:63

Exact �0:060437 �1:34283 �5:416174 �8:42056 �6:44336
7i25:8405 7i161:951 7i453:455 7i888:43 7i1468:66

6.0 FEM �0:0725248 �1:61167 �6:50734 �10:1450 �7:81185
7i25:8406 7i161:963 7i453:579 7i889:22 7i1472:29

ANCM �0:0725244 �1:6145 �6:50062 �10:1047 �7:72750
7i25:8406 7i161:957 7i453:454 7i888:35 7i1468:55

[10] �0:0725243 �1:61146 �6:50064 �10:1047 �7:72747
7i25:8406 7i161:956 7i453:456 7i888:35 7i1468:55

Exact �0:0725243 �1:61145 �6:50069 �10:1060 �7:73064
7i25:8406 7i161:957 7i453:464 7i888:38 7i1468:59

8.0 FEM �0:0966995 �2:1490 �8:68081 �13:5313 �10:4109
7i25:8408 7i161:977 7i453:604 7i889:09 7i1472:10

ANCM �0:0966992 �2:1488 �8:67181 �13:4764 �10:2953
7i25:8409 7i161:971 7i453:473 7i888:20 7i1468:33

[10] �0:0966991 �2:1488 �8:67184 �13:4765 �10:2953
7i25:8409 7i161:971 7i453:474 7i888:20 7i1468:33

Exact �0:0966990 �2:1488 �8:67196 �13:4796 �10:3028
7i25:8408 7i161:972 7i453:489 7i888:24 7i1468:40

10.0 FEM �0:12874 �2:68662 �10:8581 �16:9223 �13:0058
7i25:8412 7i161:996 7i453:637 7i888:92 7i1471:85

ANCM �0:12874 �2:68631 �10:8469 �16:8512 �12:8562
7i25:8412 7i161:989 7i453:497 7i888:02 7i1468:05

[10] �0:12874 �2:68631 �10:8468 �16:8512 �12:8562
7i25:8412 7i161:989 7i453:498 7i888:00 7i1468:05

Exact �0:12874 �2:68627 �10:8470 �16:8574 �12:8709
7i25:8412 7i161:991 7i453:521 7i888:08 7i1468:16
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dashpot at xc ¼ 0:2 with damping coefficient c ¼ 5Nðm=sÞ; and a concentrated mass at xM ¼ 0:8:
In Table 4 the limiting values TR-0 and TR-N correspond to cantilever beams and propped
cantilever beams, respectively. In Table 5 the limiting values RR-0 and RR-N correspond to
cantilever beams and to clamped-guided beams, respectively.

In Table 6 a simple supported beam is examined, with a concentrated mass at xM ¼ 0:8 and a
concentrated dashpot at xc ¼ 0:2: The frequencies are given for different values of the damping
constant c; and, obviously, the purely imaginary frequency corresponds to the undamped case.

Finally, in Table 7 a clamped–clamped beam with concentrated mass at the midspan is examined,
in the presence of a dashpot placed at various non-dimensional abscissa xc from 0.1 to 0.9. From the
table it is possible to observe that for xc ¼ 0:5 the second eigenvalue becomes purely imaginary,
because, due to symmetry, its corresponding vibration mode has a node at the midspan.

Table 4

First and second free complex vibration frequencies as a function of the axial stiffness TR

TR l1 l2

0 �0:00792727i9:545853 �1:405877i161:273281
0.005 �0:00792727i9:553565 �1:405907i161:275960
0.05 �0:00792727i9:622558 �1:406217i161:300145
0.5 �0:00812747i10:283837 �1:409257i161:541319
5 �0:00995297i15:194649 �1:439337i163:894145
50 �0:02723687i32:366245 �1:703167i182:437805
500 �0:07503207i48:228965 �2:523787i226:317733
5000 �0:09163387i51:274219 �2:806887i240:190116
50 000 �0:09365717i51:893732 �2:838627i241:798300
500 000 �0:09386377i51:930767 �2:841827i241:961388
5 000 000 �0:09388447i51:934474 �2:842147i241:977720
50 000 000 �0:09388657i51:934845 �2:842187i241:979353
500 000 000 �0:09388677i51:934882 �2:842187i241:979517
5 000 000 000 �0:09388677i51:934885 �2:842187i241:979533

Table 5

First and second free complex vibration frequencies as a function of the rotational stiffness RR

RR l1 l2

0 �0:00792727i9:545853 �1:405877i161:273281
0.005 �0:00794047i9:560179 �1:406897i161:342310
0.05 �0:00805777i9:685675 �1:416017i161:954632
0.5 �0:00907117i10:676558 �1:498747i167:301886
5 �0:01297767i13:514227 �1:888717i188:889035
50 �0:01552467i14:893546 �2:196617i203:536652
500 �0:01594007i15:088381 �2:246877i205:831743
5000 �0:01596627i15:108679 �2:252197i206:073792
50 000 �0:01597047i15:110717 �2:252737i206:098128
500 000 �0:01597097i15:110921 �2:252787i206:100563
5 000 000 �0:01597097i15:110941 �2:252797i206:100807
50 000 000 �0:01597097i15:110943 �2:252797i206:100831
500 000 000 �0:01597097i15:110943 �2:252797i206:100831
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4. Conclusions

In this paper the emphasis is placed on the use of Mathematica programming language, and its
powerful approach to symbolic analysis of free vibration frequencies for a beam on flexible
constraints, a concentrated dashpot at an arbitrary abscissa, and concentrated mass at another
concentrated abscissa. The exact results have been compared with some particular cases already
studied in the references, and some other numerical examples have been illustrated. The frequency
equation is reproduced in the appendix for a particular case, as obtained from the general result
by means of limiting processes.

Appendix

Frequency equation for a cantilever beam carrying a concentrated mass at its right free end, and
a dashpot at the variable abscissa xc:

1

EIrA
128eð�1�iÞð2xcbþbÞb15
�


 4eð2þ2iÞbxcEIðð1þ iÞðiþ e2ib � e2b � ieð2þ2iÞbÞMb
�

Table 6

First free complex vibration frequency as a function of damping coefficient

c l1

0 7i39:490818
1 �0:11200647i39:4910775
2 �0:22401847i39:4918572
3 �0:33604147i39:4931570
4 �0:44808107i39:4949774
5 �0:56014277i39:4973193
6 �0:67223217i39:5001836
7 �0:78435477i39:5035715
8 �0:89651597i39:5074844
9 �1:00872147i39:5119239
10 �1:12097667i39:5168920

Table 7

First and second free complex vibration frequencies as a function of the dashpot abscissa

xc l1 l2

0.1 �0:01224257i55:4505568 �0:76920067i453:260046
0.2 �0:13917197i55:4511206 �5:39503907i453:396131
0.3 �0:46743167i55:4517021 �8:40434997i453:401784
0.4 �0:88569467i55:4462437 �3:96494407i453:258505
0.5 �1:09770287i55:4396917 �07i453:252437
0.6 �0:83048107i55:4485871 �3:69405277i453:351186
0.7 �1:19805357i55:4535043 �7:47442097i456:128251
0.8 �0:18711897i55:4515064 �0:66506657i455:042417
0.9 �3:18306687i55:0446628 �0:00370267i453:305692
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� ið1þ e2ib þ 4eð1þiÞb þ e2b þ eð2þ2iÞbÞrAÞb3

þ c

ffiffiffiffiffiffiffiffiffiffi
EIb4

rA

s
ððe2bðixcþ1Þ � ie2bðð1þiÞþixcÞ � ð1þ iÞeð2þ2iÞbxc � eð2þ4iÞbxc

þ ð2þ 2iÞeð3þ3iÞbxc � ieð4þ2iÞbxc þ ie2bðiþxcÞ � ð1þ iÞeð2þ2iÞbðxcþ1Þ

� e2bðð1þiÞþxcÞ þ ð2þ 2iÞeð1þiÞbðxcþ2Þ þ ð1þ iÞe2bðiþð1þiÞxcÞ

þ e2bðiþð2þiÞxcÞ þ ð1þ iÞe2ðð1þiÞxcbþbÞ þ ie2ðð1þ2iÞxcbþbÞ

� ð2þ 2iÞeð1þ3iÞxcbþ2b � ð2þ 2iÞe2ibþð3þiÞxcbÞð1þ iÞMb

þ ðe2ibþð2þ2iÞxcbð1� iÞ þ eð2þ4iÞbxc þ e2bðiþxcÞ � e2bðð1þiÞþxcÞ � e2ðð1þ2iÞxcbþbÞ

� ð2þ 2iÞeð3þ3iÞbxc � ð1þ iÞeð2þ2iÞbðxcþ1Þ � ð2þ 2iÞeð1þiÞð3xcbþbÞ

� ð1� iÞe2ðð1þiÞxcbþbÞ � ð2� 2iÞe2ibþð3þiÞxcb � ð2� 2iÞeð1þiÞbþð3þiÞxcb

� ie2ibþð4þ2iÞxcb þ e2bðð1þiÞþixcÞð�iÞ þ eð4þ2iÞbxc iþ e2ixcbþ2bi

þ eð2þ2iÞbxcð1þ iÞ þ eð1þiÞbðxcþ1Þð2þ 2iÞ þ eð1þiÞbðxcþ2Þð2þ 2iÞ

þ eð1þiÞðð2þiÞxcbþbÞð2� 2iÞ þ eð1þ3iÞxcbþ2bð2� 2iÞÞrA
��

¼ 0:
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